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Unified lattice Boltzmann method for flow in multiscale porous media
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In this paper, we develop a unified lattice Boltzmann method for flow in multiscale porous media. This
model not only can simulate flow in porous systems of various length scales but also can simulate flow in
porous systems where multiple length scales coexist. Simulations of unidirectional steady flow through homo-
geneous and heterogeneous porous media both recover Darcy’s law when the effects of inertial forces and
Brinkman correction may be negligible. Direct use of this model on the usual computational nodes, with zero
resistance on void spaces and infinite resistance on solid walls, gives results that agree well with analytical
solutions. Simulations performed on a fractured porous system show that the method presented here gives very
good overall permeability values for the whole fractured system. A series of simulations is performed on a
simplified fractured system. The results indicate that, when the ratio of the permeability of the rock matrix to
the fracture permeability calculated by the cubic law is less than 1024, the effects of the rock matrix flow are
negligible, and the discrete-fracture models that ignore such flow are plausible. When the ratio is larger than
1024, the matrix flow has significant effects on the fractured system, and the assumption that the matrix is
impermeable does not hold. Therefore, the use of the cubic law to calculate the fracture permeability may cause
a significant error. It is also indicated that the larger the ratio of the width of the porous matrix to that of the
fracture, the more significant is the error caused by using the cubic law.

DOI: 10.1103/PhysRevE.66.056307 PACS number~s!: 47.55.Mh
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I. INTRODUCTION

Flow and transport in porous media are usually obser
physically and treated theoretically at various scales: at
croscopic~pore!, macroscopic~laboratory, local!, and field-
scales. Dominant processes and governing equations
vary with the scale. In many situations of flow in poro
media, two or multiple scales coexist and are of more or l
equal importance. One such example is flow in fractu
porous systems. Flow and solute transport in naturally fr
tured porous media have attracted attention due to their
portance in water resources, pollution migration in aquife
and radioactive waste reposition@1,2#. Owing to the statisti-
cally complex distribution of geological heterogeneity a
the multiple length and time scales, three approaches@3,4#
are commonly used in describing fluid flow and solute tra
port in naturally fractured porous formations:~1! discrete-
fracture models,~2! continuum models using effective prop
erties for discrete grids, and~3! hybrid models that combine
the above two.

The discrete-fracture models are based on the observa
that the permeability of a fracture is usually much larger th
that of the rock matrix. As a result, most of the flow
through the fracture network as long as the fractures are
connected, meaning that the connectivities as well as
1063-651X/2002/66~5!/056307~11!/$20.00 66 0563
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distributions of the fractures determine the flow pattern in
fractured formation. With this fact in mind, the discret
fracture models only account for the flow through the fra
tures@5–8#, assuming the matrix to be impervious. Althoug
these models can realistically describe the distribution
fractures and the flow and mass transfer between fract
and matrix, they can only be applied to a small-scale stu
because of their complexity and the limitations of the n
merical methods involved.

A typical continuum model includes a limited number
regions in which physical properties are uniform. The phy
cal properties computed from a fracture network with an i
pervious matrix are volume averaged for the total rock si
which includes fractures and matrix@9,10#. Part of the pri-
mary input data into these continuum models@11,12# is the
permeability of the fracture system assigned to the vari
regions of the models. The continuum models can be app
to very large-scale studies. However, they can easily m
locally dominant phenomena, such as mass and momen
transfer by primary fractures.

Hybrid models are a combination of discrete-fracture a
continuum models in which the large-scale dominant fr
tures are represented discretely and small fractures are m
eled through a network block@13#. Wenet al. @14# modeled
deterministically fractured zones and used a stochastic c
©2002 The American Physical Society07-1
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KANG, ZHANG, AND CHEN PHYSICAL REVIEW E66, 056307 ~2002!
tinuum model for nonfractured areas. Leeet al. @4# devel-
oped a hierarchical approach to model flow in a natura
fractured reservoir with multiple length scale fractures. T
permeability contribution from short fractures is derived
an analytical expression and used as an enhanced matrix
meability for the next-scale~medium-length! calculation.
The effective matrix permeability associated with mediu
length fractures is numerically solved by using a bound
element method. The long fractures are modeled explicitly
major fluid conduits.

This study develops a unified method applicable to va
ous length scale systems as well as to systems where
tiple length scales coexist. The length of the scales in
method can be as small as pore scales~on the order of mi-
crometers!, as large as field scales~on the order of meters to
kilometers!, or a mixture of various scales, depending on
porous formations under consideration. This method is ba
on the lattice Boltzmann~LB!, a numerical method based o
microscopic models and mesoscopic kinetic equations. T
feature gives the LB method the advantage of studying n
equilibrium dynamics, especially in fluid-flow application
involving interfacial dynamics and complex boundaries~ge-
ometries!. Since its appearance, the LB method has prove
be competitive in studying a variety of flow and transp
phenomena~see@15–19# for reviews!, including single- or
multiphase flow@20–24# and chemical dissolution@25# in
porous media. This feature, however, also makes it diffic
for the original LB method to be applied to systems w
larger length scales.

Previous efforts have been made to develop macrosc
porous media models for lattice gas and LB methods
introducing a resistance force by dynamically altering
local flow velocity; this process provides the necessary m
mentum sink. This fundamental idea appeared in a rudim
tary form in early work on lattice gas automata@26#. More
recently, it was applied to the LB method for simulations
flow through porous fiber tows to calculate the overall p
meability of a fiber bundle@27#. Freed@28# made some cor-
rections to the above model, to recover flow through a re
tance field with arbitrary resistance tensor compone
Direct use of this model on the usual computational nod
with zero resistance on void space and infinite resistance
no-slip sites, will match results from the regular LB meth
on pore scale. Replacing the usual computational nodes
porous media nodes in the volume supposed to be occu
by a porous medium, however, will extend the applicabil
of this model to systems with much larger length scales.

The above-mentioned model can be applied to pore-s
systems as well as macroscopic systems. To apply it to
tems where multiple length scales coexist, it is advantage
to extend it to nonuniform meshes. Since He and Luo@29#
and Abe @30# demonstrated that the LB equation is a d
cretized form of the continuous Boltzmann equation and t
the discretization of physical space is not coupled to the
cretization of momentum space, several efforts have b
made to treat the curved boundaries and to control the
density at desirable regions.

Succi et al. @31,32# and Xi et al. @33# proposed finite-
volume LB methods for simulation of fluid flows in comple
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geometries. Heet al. @34–36# proposed an interpolation
supplemented LB model to simulate a two-dimensional~2D!
channel flow with sudden expansion on a nonuniform m
and flows past a circular cylinder in a curvilinear coordina
system. Mei and Shyy@37# developed a LB method in a
generalized body-fitted coordinate system. Filippova a
Hanel @38# developed a second-order-accuracy bound
condition for the LB method to treat a curved boundary
the regular structured mesh. Meiet al. @39# improved this
scheme and further extended it to three dimensions@40#. Lin
and Lai @41# proposed a composite block-structured L
method for the simulation of 2D, incompressible fluid flow
Lee and Lin@42# developed a characteristic Galerkin meth
for a discrete Boltzmann equation to simulate fluid flows
complex geometries.

In this study, we use the interpolation-supplemented
model proposed by Heet al. @34#. Because this model add
only one new interpolation step between the streaming
relaxation steps in the conventional LB method and reta
the local property of the two steps, it is easy to apply to
above-mentioned macroscopic porous media model. Ex
sion of the macroscopic porous media model to a nonu
form grid and the intrinsic parallelism of the LB metho
enable the proposed unified model to simulate flow in lar
scale fractured media with the coexistence of various len
scales.

II. MODEL AND THEORY

A. Lattice Boltzmann method

Fluid flow can be simulated with the following LB equa
tion:

f i~x1eid t ,t1d t!5 f i~x,t !2
f i~x,t !2 f i

eq~r,u,T!

t
, ~1!

where f i is the particle velocity distribution function alon
the i direction,d t is the time increment,t is the relaxation
time relating to the kinematic viscosity byn5(t20.5)RT,
and f i

eq is the corresponding equilibrium distribution func
tion, which has the following form:

f i
eq~r,u,T!5v irF11

ei•u

RT
1

~ei•u!2

2~RT!2
2

u2

2RTG , ~2!

whereR is the gas constant, andu, r, andT are the velocity,
density, and temperature of the fluid, respectively. Theei ’s
are the discrete velocities and thev i ’s are the associated
weight coefficients. For the 2D, nine-speed LB model,
haveRT51/3, and
7-2
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The corresponding weight coefficients arev054/9, v i
51/9 for i 51,2,3,4, andv i51/36 for i 55,6,7,8. The den-
sity and velocity of the fluid are calculated using

r5(
i

f i , ~4!

ru5(
i

ei f i . ~5!

It is well known that, using the Chapman-Enskog expa
sion, the above LB equation, Eq.~1!, recovers the correc
continuity and momentum equations at the Navier-Sto
level,

]r

]t
1“•~ru!50, ~6!

]~ru!

]t
1“•~ruu!52“p1“•@rn~“u1u“ !#, ~7!

wherep5rRT is the fluid pressure.

B. Macroscopic porous media modeling

Here we adopt the macroscopic porous media model
troduced by Freed@28#. It is an improvement on the model o
Spaid and Phelan@27#, which is based on the general ide
that an external force can be introduced into the macrosc
fluid dynamics by altering the local and instantaneous ve
ity during the collision step. Interphase and gravity forc
have been achieved in this fashion@43,44#.

Here we give a brief review of the macroscopic poro
media model; readers may refer to@28# for more details.
Some additional notation is introduced to help describe
method:ũ is the precollision~poststreaming! velocity; u8 is
the postcollision velocity;ū is the ‘‘centered-mean’’ velocity,
i.e., the resulting mean field continuum velocity;f i is the
precollision~poststreaming! distribution, f̃ i[ f i

eq(r,ũ,T), f i8

[ f i
eq(r,u8,T), and f̄ i[ f i

eq(r,ū,T), where the functional
form of f i

eq is given by Eq.~2!. The right-hand side~RHS! of
Eq. ~1! can be defined as the collision operatorC, and for the
basic LB scheme may be written as

C~ f i !5 f i2
f i2 f̃ i

t
. ~8!
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By using a new velocityu8 in the equilibrium distribu-
tion, the collision operator becomes

C~ f i !5 f i2
f i2 f i8

t
, ~9!

and an external forceF,

F5
r

t
~u82ũ!, ~10!

is introduced into the mean dynamics and appears on
RHS of Eq.~7! @43#. To treat the porous media region as
‘‘resistance field’’ where the superficial velocity is taken
be an appropriate continuum velocity variable, it is necess
to let

r

t
~u82ũ!52rR•ū. ~11!

The resistance tensorR is defined as

R5nk21, ~12!

wheren is the fluid kinematic viscosity, andk is a ~symmet-
ric! tensor of permeability coefficients. The centered-me
velocity ū is defined as@43#

ū5ũ1
F

2r
5S 12

1

2t D ũ1
1

2t
u8. ~13!

Substituting Eq.~13! into Eq. ~11! and solving foru8 gives

u85F I 1
1

2
RG21F I 2S t2

1

2DRG•ũ5G•ũ, ~14!

whereG is the ‘‘velocity adjustment tensor,’’ which depend
on R andt. When the resistance tensor is diagonal, Eq.~14!
may be written as

ua85Gaũa ~15!

and the expression forGa becomes

Ga5

12S t2
1

2DRa

11
1

2
Ra

. ~16!
7-3
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Direct use of Eq.~9! for the collision step, in conjunction
with Eq. ~14!, results in an artifactA in the momentum trans
port equation at the viscous level of the form

A5“•~rūū2ru8u8!, ~17!

where A appears on the RHS of the momentum transp
equation along with the resistance forceF52rR•ū. The
artifact can be removed by replacing the equilibrium dis
bution f i8 used in Eq.~9! by a modified distributionf i* ,

f i* 5 f i81ḡi2gi8 , ~18!

whereḡi5gi(r,ū,T), gi85gi(r,u8,T), and the functiongi is

gi~r,u,T!5v irF11
~ei•u!2

2~RT!2
2

u2

2RTG . ~19!

The complete algorithm for the porous media model m
therefore be given as

f i~x1eid t ,t1d t!5 f i~x,t !2
f i~x,t !2 f i* ~r,u,T!

t
, ~20!

f i* ~r,u,T!5v irF11
ei•u8

RT
1

~ei•ū!2

2~RT!2
2

ū2

2RTG , ~21!

with u8 and ū given by Eqs.~14! and ~13!. The resulting
macroscopic transport equations are

]r

]t
1“•~ru!50, ~22!

]~ru!

]t
1“•~ruu!52“p2rR•u1“•@rn~“u1u“ !#,

~23!

whereu is understood to be the centered-mean velocityū,
which is the superficial velocity or the flux. It is clear th
Eq. ~23! recovers Brinkman’s equation@45# when the inertial
terms on the left-hand side can be neglected. The last ter
this equation is called the Brinkman correction, which is u
ally much smaller than the linear-velocity term for flo
through porous media. Hence Eq.~23! is reduced to Darcy’s
law when flow in porous media is very slow. However,
sites where permeability is very large, i.e., the resistanc
very small, the linear-velocity term is negligible compared
other terms and Eq.~23! recovers the Navier-Stokes equatio
~Brinkman’s equation yields Stokes’ flow in this case!. In the
limiting case where the resistance tensorR is infinite, u
equals zero, which is the no-slip condition at solid walls.

C. Nonuniform grid extension

For simplicity, we only consider a nonuniform, rectang
lar computational mesh in this study. Following the proc
dure adopted by Heet al. @34#, let Xa,b[(Xa ,Yb) denote a
05630
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grid point on an arbitrary rectangular computational mesh
a Cartesian coordinate system, anddXa anddYb denote grid
sizes,

dXa5Xa112Xa , ~24!

dYb5Yb112Yb . ~25!

The ratios of nonuniform-to-uniform grid sizes are defined

r x
a5dXa /dx , ~26!

r y
b5dYb /dy . ~27!

Given the initial values off i at each grid point (Xa ,Yb), the
LB system evolves on the nonuniform mesh in the followi
steps.

~1! Since the precollision value off i(Xa,b ,t) is known on
each grid point (Xa ,Yb), the densityr and the precollision
velocity ũ, can be calculated from Eqs.~4! and ~5! at each
grid point. The postcollision velocityu8 and centered-mean
velocity ū can then be calculated from Eqs.~14! and ~13!,
respectively. The modified equilibrium distribution functio
can then be constructed using Eq.~21!. The postcollision
value of f i(Xa,b ,t) is henceforth obtained.

~2! After the collision, advection takes place, and t
f i(Xa,b1eid t ,t1d t) are obtained.

~3! The values off i(Xa,b ,t1d t) on the mesh gridsXa,b
are computed by interpolation from the values off i(Xa,b
1eid t ,t1d t) on the pointsXa,b1eid t . Then the collision
and the advection process are repeated.

D. Discussion of the unified model

In the simulation of flow through a porous system, th
model is employed by simply replacing the usual compu
tional nodes with porous media nodes in the region suppo
to be occupied by porous medium. Each node in this reg
is given a permeability value and represents a homogene
medium with that permeability value. All continuum prope
ties at this node have been volume averaged and satisfy
mass and momentum transport equations given by Eqs.~22!
and ~23! @28#. At a node in pore space, however, the res
tance is specified as zero, all continuum properties are
croscopic variables, and Eq.~23! recovers the Navier-Stoke
equation. At an impervious wall node where the resistanc
given as infinity, the velocity is zero according to Eq.~23!,
and the nonslip condition is satisfied. This method treats
porous medium nodes, pore nodes, and wall nodes in
same way, although they are at different length sca
Hence, there are no internal boundaries in this model.
extension of this method to a nonuniform grid gives it mo
flexibility in handling flow in porous systems where multip
length scales coexist.

The unified model presented here is different from oth
existing multiscale methods. Unlike integrated schemes@46#,
in which different methods are used to handle individu
scales, this unified model uses the same method in region
different spatial scales and hence avoids the use of com
methods to achieve seamless interfaces between
7-4
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UNIFIED LATTICE BOLTZMANN METHOD FOR FLOW . . . PHYSICAL REVIEW E66, 056307 ~2002!
different mathematical models at various scales. Compa
to the existing multiscale LB schemes@47–49#, the unified
model eliminates the internal boundaries and can hand
larger scale span because of its utilization of resistance fi
On one hand, this model enables us to carefully investig
some regions of great interest while ignoring the flow deta
in regions far from there. On the other hand, it may n
provide such a smooth transition between these regions a
some advanced coarsening techniques like wavelets@50#.

Neither the macroscopic porous media model nor its
tension to a nonuniform grid changes the feature of para
ism inherent in the basic LB algorithm, which renders t
unified model proposed in this paper especially suitable
simulating flow in large-scale fractured media.

III. SIMULATION RESULTS AND DISCUSSION

In the simulations below, the resistance is assumed to
isotropic by settingRy5Rx , so the resistance tensor
purely diagonal. Extending to anisotropic permeability a
hence anisotropic resistance fields should be straightforw

A. Flow in porous media

1. Flow in a homogeneous porous medium

From Eq. ~23!, Darcy’s law should be recovered fo
steady flow when the inertial and Brinkman correction ter
can be neglected. A simple test of unidirectional flo
through a homogeneous porous medium is performed
verify the validity of the method described here.

The simulation geometry is a rectangle of size 100340,
based on regular square lattice unit spacings. The perme
ity value at each node is equal to a constant. At the entra
(x50) and exit (x5100), pressure is specified by using t
inlet/outlet pressure boundary conditions proposed by Z
and He@51#. At y50 andy540, periodic boundary condi
tions are applied.

Two types of mesh are used in the simulations: a reg
uniform square mesh grid and a uniform rectangular m
grid. The square mesh grid is 101341, where the ratios o
nonuniform-to-uniform grid sizes arer x5r y51. No interpo-
lation is needed in simulations on this mesh grid. The re
angular mesh grid is 41321, wherer x52.5, r y52. The
quadratic interpolation is used because its accuracy is c
parable to the accuracy of the LB method itself.

Figures 1~a!, 1~b!, and 1~c! show the dependence of th
specific discharge on the pressure drop at three value
permeability: 1, 10, and 100, respectively. All quantities a
in lattice units. The simulation results on the rectangu
mesh agree well with those on the square mesh, indica
the correctness of the interpolation method used in
study; it also confirms that the quadratic interpolation is s
ficient for this LB algorithm. The simulation results are
good agreement with analytical solutions based on Dar
law, especially when the pressure drop is small. At a h
pressure drop, the simulation results deviate from the ana
cal solutions due to inertial effects and the compressibi
inherent in the LB method. The simulation results confi
that Eqs.~22! and ~23! recover Darcy’s law if the flow is
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steady and the effects of inertial and Brinkman correct
terms are negligible.

2. Flow in a heterogeneous porous medium

We also simulated flows through a bimodal heterogene
porous medium generated using a two-stage procedure@52#.
The field is 16 m316 m, and the grid size is 81381. The

FIG. 1. The dependence of specific discharge on the pres
drop: test of Darcy’s law. All quantities are in lattice units. Thr
values of permeability are used:~a! k51; ~b! k510; ~c! k5100.
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KANG, ZHANG, AND CHEN PHYSICAL REVIEW E66, 056307 ~2002!
permeability field is composed of two permeability popu
tions: one with a low mean permeability~the black material
region!, and the other with a high mean value~the white
region!. The permeability also varies within each regio
Overall, the maximum value of the permeability is 6.
310213 m2, and the minimum value is 8.46310217 m2.
The pressure~head! difference between the entrance and t
exit is 0.5 m. The density and viscosity of the fluid a
997.81 kg/m3 and 1.0024631023 kg m21 s21.

There is no analytical solution for flow through such
porous medium because of the heterogeneity of the med
even though the flow is assumed to be steady and Dar
law is satisfied. To verify the validity of the method in sim
lating flow through such a medium, we compared our sim
lation results with those obtained by using the finite-elem
heat- and mass-transfer code~FEHM! developed by Zyvoloski
et al. @53#. In both simulations, the grid size is 81381; pres-
sure ~head! is specified at entrance and exit; and veloc
along the normal direction of the other two boundaries is
to zero. Notice that inFEHM Darcy’s law is used, while in our
method Eq.~23! is solved. However, in the case of stea
flow with a small Reynolds number, where inertial forc
and the Brinkman correction can be neglected, the result
these two methods should be close to each other. The R
nolds number is defined as Re5rul/m, wherer andm are
the density and viscosity of the fluid, respectively, andu and
l are the characteristic velocity and length of the syste
respectively. Herel is the length of the field, andu is the
average horizontal velocity in the whole fluid field.

Figure 2 shows the permeability distribution and the co
tours of pressure~head! obtained by these two methods. Th
permeability values are multiplied by 1014. The solid lines
are the results obtained with the current method, and
dashed lines are results obtained withFEHM. The Reynolds
number in the current method is Re55.9631023. Appar-

FIG. 2. The permeability distribution and the pressure conto
obtained by the current method~solid lines! and FEHM ~dashed
lines!. The field is 16 m316 m. The pressure~head! is 10.5 m at
entrance, and 10 m at exit. The permeability is in units of m2, and
its values are multiplied by 1014. The Reynolds number in the cu
rent method is 5.9631023.
05630
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ently, at this Reynolds number, the pressure contours of th
two methods agree with each other very well, and they
both mainly distributed in two regions where the permeab
ity values are relatively small. This is correct since in su
regions the resistance to the flow is larger and, according
greater pressure drop is needed to achieve the overall
rate; hence the pressure contours are denser than elsew
Figure 3 shows the dimensionless pressure profile along
horizontal center of the domain~at y58). The results of
these two methods are in good agreement.

Figures 4 and 5 show the same quantities as Figs. 2 an
but in this case the Reynolds number is Re54.75. The dif-
ferences between the results from these two approache
crease with the Reynolds number. At the relatively high R
nolds number of 4.75, the inertial forces become
important that flow is not well represented by Darcy’s law

B. Flow in a 2D channel

In the above section, we tested the validity of the meth
for flow under situations where the resistance has nonz
finite values. In this section, we test its validity in flow sim
lations where the resistance is zero or infinite.

The simulation geometry is a rectangle of size 100324,
based on regular square lattice unit spacings. At nodesy
50,1,2,22,23,24, the permeability is set to zero, i.e., re
tance is infinite. At other nodes, the permeability is set
infinity, i.e., resistance is zero. At the entrance (x50) and
exit (x5100), the pressure is specified@51#; at y50 andy
524, periodic boundary conditions are applied. This set
permeability values should recover the 2D channel flow
tweeny52 andy522; this flow has an analytical solution
The horizontal velocity has the following form:

s

FIG. 3. The dimensionless pressure profile at the centerliney
58 m) obtained by the current method~solid line! and FEHM

~dashed line!. pi is the pressure at the entrance, andpo is the pres-
sure at the exit. The Reynolds number in the current metho
5.9631023.
7-6
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u5
h2Dp

2m l Fy22

h
2S y22

h D 2G , ~28!

whereh is the channel width,Dp is the pressure drop be
tween the entrance and the exit,m is the fluid viscosity, and
l is the channel length. The averaged velocity isū
5h2Dp/12m l , and the permeability can be calculated as

k5
ūm l

Dp
5

h2

12
. ~29!

Equation~29! is called the cubic law, and is widely used
discrete-fracture models to calculate the permeability o
single fracture.

Figure 6 shows the horizontal velocity profile normaliz
by the centerline velocityU0 of the analytical solution. It is
clear that the velocity profile fromy/h50.1 to y/h51.1 (y
52 to y522) is parabolic; velocity at the nodes out of th
region is zero. This is correct because the resistance is
nite at those nodes. It is clear that the 2D channel flow
recovered with excellent accuracy for this setup. The per
ability of the channel is also calculated; it is 33.1, very clo
to the analytical solution obtained from the cubic la
~33.3333!.

As opposed to the conventional LB method for simulati
the 2D channel flow, there are no boundary conditions ay
52 andy522. The no-slip conditions at the walls are impl
mented by prescribing the resistance values there as infi
This characteristic enables the current method to treat in
same way void spaces, solid walls, and nodes with nonz
finite values of resistance.

FIG. 4. The permeability distribution and the pressure conto
obtained by the current method~solid lines! and FEHM ~dashed
lines!. The field is 16 m316 m. The pressure~head! is 10.5 m at
entrance, and 10 m at exit. The permeability is in units of m2, and
its values are multiplied by 1014. The Reynolds number in the cu
rent method is 4.75.
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C. Flow through fractured systems

In previous sections, we applied the method presente
this paper to flows in porous media at the field scale and fl
in a 2D channel at the pore scale. Now we apply the met
to flows in fractured systems where multiple scales coex
For this purpose, the use of nonuniform grids is advan
geous. Figure 7 shows a fractured system constructed
mirroring the original porous medium and leaving a fractu
between the original medium and its image. The size of t
fractured system is 2553530, and the fracture width is 20
both in lattice units. When the conventional LB metho
based on a uniform square grid, is applied to this system
mesh size of 2563531 is needed. However, if we are inte
ested in only the overall behavior of the fractured syst
instead of the flow details in the two porous matrices,
may simplify the two porous matrices as homogeneous o
and use substantially fewer nodes to represent them. Eac
the nodes has the permeability value of the original por
medium~0.59 in lattice units, which is used as input at ea
node!. In the simulation with the current method, there is
detailed geometry at the pore scale, and the original por
medium and its mirror are replaced by a homogeneous
rous medium. Figure 8 shows the mesh used in the sim
tion of the current method. The mesh size is only 513101.
r x is 5.1 at all nodes, andr y changes smoothly from 1~inside
the fracture! to 12.657~at y50 andy5530). In both simu-
lations, the pressure is specified at the entrance and exit@51#,
and periodic boundary conditions are applied to the ot
two boundaries. The permeability in a region is calculated

k5
ūm l

Dp
, ~30!

whereū is the average horizontal velocity in this region.

s

FIG. 5. The dimensionless pressure profile at centerliney
58m) obtained by the current method~solid line! and FEHM

~dashed line!. pi is the pressure at the entrance, andpo is the pres-
sure at the exit. The Reynolds number in the current method is 4
7-7
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KANG, ZHANG, AND CHEN PHYSICAL REVIEW E66, 056307 ~2002!
Table I shows the permeability values of the bottom ha
the top half, the fracture, and the whole system calculated
the conventional LB method and by our current method. I
clear that the permeability values of the porous matrix
tained by the current method are smaller than those ca
lated by the conventional LB method, and that the perm
ability value of the fracture obtained by the current method
greater than that obtained by the conventional LB meth
This discrepancy is partly due to the heterogeneity of
porous matrix.

As mentioned above, the basis for replacing the us
computational nodes in a region with nodes with unifo
permeability values is that the porous matrix in this region

FIG. 6. The horizontal velocity profile~normalized by the cen-
terline velocityU0 of analytical solution! of 2D channel flow.

FIG. 7. Geometry of a fractured system. Its size is based on
lattice unit.
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homogeneous. There is no guarantee here that the orig
porous medium is homogeneous. The local heterogeneit
the medium plays an important role in the interaction b
tween the porous matrix and the fracture and thus has
important effect on the permeability values calculated by E
~30! for both the porous matrix and the fracture. Howev
for the overall permeability of the fractured system, the va
obtained in the current method is very close to that obtai
by the conventional LB method in spite of the local hete
geneity of the porous matrix. This is very encouraging. Fo
fractured porous system, we may represent a region of
rous medium or minor fractures with considerably few
nodes having certain permeability values and solve the
flow in this region on a length scale much larger than
pore scale; we should, however, solve flow in a region
major fractures with fine grids. By doing so, we can han
fractured systems where multiple length scales coexist.

In the rest of this section, we apply the method presen
in this paper to flow via a simplified fractured system
investigate the validity of the cubic law, which is widel
used in discrete-fracture models. Figure 9 shows a simpli
fractured system, wherel is the length along the flow direc
tion, h is the width of the fracture, andhp is the width of the
porous matrix. In our simulations,l is 200 andh is 20, both
in lattice units. Two values ofhp ~200 and 400! are used. The
mesh size in thex direction is 51, withr x54 at all nodes. In
the y direction, the mesh size is 61 in the former case a
101 in the latter case. The valuer y changes smoothly from 1
~inside the fracture! to 9.48 ~at y50 and y5220 in the
former case! and 9.50~at y50 andy5420 in the latter case!.
Figure 10 shows the mesh used in the simulations on
e

FIG. 8. Nonuniform rectangular mesh used in the simulation
the fractured system.
7-8
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UNIFIED LATTICE BOLTZMANN METHOD FOR FLOW . . . PHYSICAL REVIEW E66, 056307 ~2002!
system withhp5200. Again, the pressure is specified at bo
ends@51#, and periodic boundary conditions are applied
y50 andy5hp1h.

Figure 11 shows the dependency of the normalized p
meability of the fracture and the whole system on the n
malized permeability of the porous matrix for bothhp /h
510 andhp /h520. The valuekc is the permeability calcu-
lated by the cubic law with the fracture width, andk0 is the
effective permeability of the whole system under the con
tion that the porous matrix is impermeable. The valuekp is
the permeability of the porous matrix,kf is the permeability
of the fracture, andke is the permeability of the whole frac
tured system. The ratio ofke to k0 can be used as an indica
tion of error caused by the cubic law used to calculate
permeability of the whole fractured system. It is clear th
whenkp /kc is less than 1024 ke /k0 andkf /kc are very close
to 1 in both cases. At this small value ofkp /kc , the perme-
ability of the porous matrix is so small, compared to t
fracture, that flow inside it contributes little to the who
system. Hence, the total effective permeability of the fr
tured system can be calculated as though the porous mat
impermeable, and the permeability of the fracture can
calculated by the cubic law based on the width of the fr
ture. As kp /kc increases to about 1024, ke /k0 of the case
hp /h520 begins to increase.

With the further increase ofkp /kc , theke /k0 of the case
hp /h510 also begins to increase. Askp /kc exceeds 1023,
kf /kc in both cases begins to increase. The depende
curves ofkf /kc onkp /kc in the two geometries coincide wit
each other. This is reasonable: whenhp is big enough, the
flow in the porous matrix away from the fracture becom
uniform; the permeability of the fracture does not depend
hp . The normalized permeability of the whole syste

FIG. 9. Geometry of a simplified fractured system.

TABLE I. Permeability values~in lattice units!.

Top half Bottom half Fracture Overal

Conventional LB 0.64 0.64 35.31 1.94
Current method 0.61 0.61 37.01 1.99
Error -4.7% -4.7% 4.8% 2.6%
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ke /k0, however, does depend on the width ratio of the p
rous matrix to the fracture. At a given value ofkp /kc greater
than 1024, the ke /k0 of hp /h520 is larger than that of
hp /h510. That is, when the width ratio is big enough, a
though the flow in the porous matrix is still very small, th
contribution of the porous matrix to the fractured system
not negligible due to its large size compared to the fractu
The cubic law used in this case to calculate the fracture p
meability will incur significant error. This also means that t
higher the ratio, the more significant the error caused
using the cubic law, and hence the stricter the conditions
using the cubic law to calculate the fracture permeability

FIG. 10. Nonuniform rectangular mesh used in the simulatio
of the simplified fractured system withhp /h510.

FIG. 11. Dependency ofkf /kc andke /k0 on kp /kc , wherekc is
the permeability calculated by the cubic law with the fracture wid
k0 is the effective permeability of the whole system under the c
dition that the porous matrix is impermeable;kp is the permeability
of the porous matrix;kf is the permeability of the fracture; andke is
that of the whole fractured system.
7-9
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KANG, ZHANG, AND CHEN PHYSICAL REVIEW E66, 056307 ~2002!
Figure 12 illustrates the horizontal velocity profiles~nor-
malized by the centerline velocity of the fracture! of the flow
through the fractured system withhp /h510 at kp /kc
51025, 1022, and 1021. At kp /kc51025, the velocity pro-
file in the fracture is parabolic, and the velocity is almo
zero in porous matrix. The interface between the porous
trix and the fracture is very sharp. Atkp /kc51022 and 1021,
the flux in the porous matrix has a finite value, althou
small, and makes a significant contribution to the syst
since the size of the porous matrix is much larger than tha
the fracture. Now the interface between the porous ma
and the fracture is smoother, indicating an interaction
tween the porous matrix and the fracture. As a result, the
in the porous matrix very close to the interface is larger th
that flux far away. Now the velocity profile in the fracture
no longer parabolic because the no-slip boundary condi
is not satisfied at the interface. In this situation, a direct
of the cubic law will cause significant error.

IV. CONCLUSIONS

We have developed a unified microscopic/macrosco
porous media method capable of simulating flow in vario
length-scale porous systems and in systems where mul
length scales coexist.

Application of this method to a unidirectional steady flo
through a homogeneous and a heterogeneous porous me
recovered Darcy’s law when the effects of inertial forces a
the Brinkman correction can be neglected. Direct use of
model on the usual computational nodes, with zero resista
on void spaces and infinite resistance on solid walls, g
results that agree very well with the analytical solutions.

Simulations performed on a fractured porous system in
cated that, as far as the overall permeability of the sys
was concerned, the current method gave a very good re
and that the method presented here is capable of hand
fractured systems with large length-scale spans.

Simulations were also performed on a simplified fractu
system. In the vicinity of the fracture, fine grids are used
the effects of the fracture are counted. Far from the fract
coarse grids are used, so simulation size can be very la
The dependency of the normalized permeability of the fr
ture and the whole system on the normalized permeabilit
the rock matrix was shown. It is clear that, when the ratio
permeability of the porous matrix to that of the fracture c
culated by the cubic law is less than 1024, the effects of the
flow in the rock matrix are negligible, and discrete-fractu
models that ignore the flow in the matrix are plausible. Wh
,

-
.
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the ratio is larger than 1024, the flow in the matrix has sig-
nificant effects on the fractured system, and the assump
that the matrix is impermeable does not hold. Therefore,
use of the cubic law to calculate the fracture permeabi
will cause significant errors. It was also indicated that t
threshold value of 1024 is not fixed. As the width ratio of the
porous matrix to the fracture increases, the conditions
using the cubic law are stricter.

In this study, we used only rectangular grids in all t
meshes, including the nonuniform ones, to validate
method. To simulate flow in realistic porous or fractured m
dia, it is necessary to extend our method to curvilinear co
dinate systems or composite grids. This is the topic of
future work.
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FIG. 12. The horizontal velocity profiles~normalized by the
centerline velocity of the fracture! at kp /kc51025, 1022, and
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