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Unified lattice Boltzmann method for flow in multiscale porous media

Qinjun Kang
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
and The Johns Hopkins University, Baltimore, Maryland 21218

Dongxiao Zhang
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Shiyi Chen
The Johns Hopkins University, Baltimore, Maryland 21218
and Peking University, Beijing, China
(Received 30 July 2002; published 21 November 2002

In this paper, we develop a unified lattice Boltzmann method for flow in multiscale porous media. This
model not only can simulate flow in porous systems of various length scales but also can simulate flow in
porous systems where multiple length scales coexist. Simulations of unidirectional steady flow through homo-
geneous and heterogeneous porous media both recover Darcy’s law when the effects of inertial forces and
Brinkman correction may be negligible. Direct use of this model on the usual computational nodes, with zero
resistance on void spaces and infinite resistance on solid walls, gives results that agree well with analytical
solutions. Simulations performed on a fractured porous system show that the method presented here gives very
good overall permeability values for the whole fractured system. A series of simulations is performed on a
simplified fractured system. The results indicate that, when the ratio of the permeability of the rock matrix to
the fracture permeability calculated by the cubic law is less tharf,1the effects of the rock matrix flow are
negligible, and the discrete-fracture models that ignore such flow are plausible. When the ratio is larger than
104, the matrix flow has significant effects on the fractured system, and the assumption that the matrix is
impermeable does not hold. Therefore, the use of the cubic law to calculate the fracture permeability may cause
a significant error. It is also indicated that the larger the ratio of the width of the porous matrix to that of the
fracture, the more significant is the error caused by using the cubic law.

DOI: 10.1103/PhysReVvE.66.056307 PACS nunierd7.55.Mh

[. INTRODUCTION distributions of the fractures determine the flow pattern in the
fractured formation. With this fact in mind, the discrete-

Flow and transport in porous media are usually observedfracture models only account for the flow through the frac-
physically and treated theoretically at various scales: at mitures[5—8]|, assuming the matrix to be impervious. Although
croscopic(pore, macroscopidlaboratory, locgl, and field- these models can realistically describe the distribution of
scales. Dominant processes and governing equations méractures and the flow and mass transfer between fractures
vary with the scale. In many situations of flow in porous and matrix, they can only be applied to a small-scale study
media, two or multiple scales coexist and are of more or lesbecause of their complexity and the limitations of the nu-
equal importance. One such example is flow in fracturednerical methods involved.
porous systems. Flow and solute transport in naturally frac- A typical continuum model includes a limited number of
tured porous media have attracted attention due to their imregions in which physical properties are uniform. The physi-
portance in water resources, pollution migration in aquiferscal properties computed from a fracture network with an im-
and radioactive waste repositiph,2]. Owing to the statisti- pervious matrix are volume averaged for the total rock size,
cally complex distribution of geological heterogeneity andwhich includes fractures and matrj®,10]. Part of the pri-
the multiple length and time scales, three approa¢Be mary input data into these continuum modglg,12 is the
are commonly used in describing fluid flow and solute transpermeability of the fracture system assigned to the various
port in naturally fractured porous formationd) discrete- regions of the models. The continuum models can be applied
fracture models(2) continuum models using effective prop- to very large-scale studies. However, they can easily miss
erties for discrete grids, an@) hybrid models that combine locally dominant phenomena, such as mass and momentum
the above two. transfer by primary fractures.

The discrete-fracture models are based on the observation Hybrid models are a combination of discrete-fracture and
that the permeability of a fracture is usually much larger tharcontinuum models in which the large-scale dominant frac-
that of the rock matrix. As a result, most of the flow is tures are represented discretely and small fractures are mod-
through the fracture network as long as the fractures are wettled through a network blodki3]. Wen et al. [14] modeled
connected, meaning that the connectivities as well as thdeterministically fractured zones and used a stochastic con-
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tinuum model for nonfractured areas. Leeal. [4] devel- geometries. Heet al. [34—364 proposed an interpolation-
oped a hierarchical approach to model flow in a naturallysupplemented LB model to simulate a two-dimensiga&l)
fractured reservoir with multiple length scale fractures. Thechannel flow with sudden expansion on a nonuniform mesh
permeability contribution from short fractures is derived inand flows past a circular cylinder in a curvilinear coordinate
an analytical expression and used as an enhanced matrix pafstem. Mei and Shyy37] developed a LB method in a
meability for the next-scalémedium-length calculation. generalized body-fitted coordinate system. Filippova and
The effective matrix permeability associated with medium-Hanel [38] developed a second-order-accuracy boundary
length fractures is numerically solved by using a boundarycondition for the LB method to treat a curved boundary on
element method. The long fractures are modeled explicitly athe regular structured mesh. Met al. [39] improved this
major fluid conduits. scheme and further extended it to three dimensjd0§ Lin
This study develops a unified method applicable to vari-and Lai [41] proposed a composite block-structured LB
ous length scale systems as well as to systems where muhethod for the simulation of 2D, incompressible fluid flows.
tiple length scales coexist. The length of the scales in thi$ ee and Lin[42] developed a characteristic Galerkin method
method can be as small as pore scatesthe order of mi-  for 3 discrete Boltzmann equation to simulate fluid flows in
crometery as large as field scalésn the order of meters to complex geometries.
kilometers, or a mixture of various s.cales, erending_on the  |n this study, we use the interpolation-supplemented LB
porous for_manons under conS|derat|o_n. This method is baseglqqel proposed by Het al. [34]. Because this model adds
on the lattice BoltzmaniLB), a numerical method based on only one new interpolation step between the streaming and

microscopic models and mesoscopic kinetic equations. Th'?elaxation steps in the conventional LB method and retains
feature gives the LB method the advantage of studying non;

o . . ) ; 7S the local property of the two steps, it is easy to apply to the
equilibrium dynamics, especially in fluid-flow applications above-mentioned macroscobic porous media model. Exten-
involving interfacial dynamics and complex boundarige- pic p ]

ometries. Since its appearance, the LB method has proved t?'on of the macroscopic porous media model to a nonuni-

be competitive in studying a variety of flow and transport orrrzjlgr;g and the |dntr|n']§|cdparzzlllellltsm.of lthte hB methd
phenomendsee[15-19 for reviews, including single- or enable the proposed unified model to simufate flow In 1arge-

multiphase flow[20—24 and chemical dissolutiofi25] in scale fractured media with the coexistence of various length

porous media. This feature, however, also makes it difficullscales'
for the original LB method to be applied to systems with
larger length scales.

Previous efforts have been made to develop macroscopic Il. MODEL AND THEORY
porous media models for lattice gas and LB methods by A. Lattice Boltzmann method
introducing a resistance force by dynamically altering the
local flow velocity; this process provides the necessary mo- Fyid flow can be simulated with the following LB equa-
mentum sink. This fundamental idea appeared in a rudimenijon:
tary form in early work on lattice gas automd6]. More
recently, it was applied to the LB method for simulations of
flow through porous fiber tows to calculate the overall per- f feq
meability of a fiber bundl¢27]. Freed[28] made some cor- , _f _ i(x )~ (p,u,T)

: : fi(x+e&d,t+6)=Fi(x,t) (D)

rections to the above model, to recover flow through a resis- T
tance field with arbitrary resistance tensor components.
Direct use of this model on the usual computational nodes,
with zero resistance on void space and infinite resistance owheref; is the particle velocity distribution function along
no-slip sites, will match results from the regular LB methodthe i direction, 6, is the time incrementy is the relaxation
on pore scale. Replacing the usual computational nodes wittime relating to the kinematic viscosity by=(7—0.5)RT,
porous media nodes in the volume supposed to be occupiethd f79 is the corresponding equilibrium distribution func-
by a porous medium, however, will extend the applicabilitytion, which has the following form:
of this model to systems with much larger length scales.

The above-mentioned model can be applied to pore-scale
systems as well as macroscopic systems. To apply it to sys-
tems where multiple length scales coexist, it is advantageous
to extend it to nonuniform meshes. Since He and [28] f2%p,u,T)=wip| 1+
and Abe[30] demonstrated that the LB equation is a dis-
cretized form of the continuous Boltzmann equation and that
the discretization of physical space is not coupled to the dis-
cretization of momentum space, several efforts have beewhereRis the gas constant, and p, andT are the velocity,
made to treat the curved boundaries and to control the gridensity, and temperature of the fluid, respectively. &®
density at desirable regions. are the discrete velocities and thg's are the associated

Succi et al. [31,32 and Xi et al. [33] proposed finite- weight coefficients. For the 2D, nine-speed LB model, we
volume LB methods for simulation of fluid flows in complex haveRT=1/3, and

e-u (g-u? U

RT "yr72 2RT) 2
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The corresponding weight coefficients arte,=4/9, w; By using a new velocity’ in the equilibrium distribu-
=1/9 fori=1,2,3,4, andw;=1/36 fori=5,6,7,8. The den- tion, the collision operator becomes
sity and velocity of the fluid are calculated using
C(f)=ti——. )
and an external forcg,
= . P, ~
pu 2] qfl (5) F:;(u —u), (]_O)

It is well known that, using the Chapman-Enskog expan-s introduced into the mean dynamics and appears on the
sion, the above LB equation, E@l), recovers the correct RHS of Eq.(7) [43]. To treat the porous media region as a
continuity and momentum equations at the Navier-Stokesresistance field” where the superficial velocity is taken to
level, be an appropriate continuum velocity variable, it is necessary

to let

ap
— 4V =0, 6 ~ —
s V-(pu) ©) g(u’—u)z—p5~u. (12)

d(pu . . '
(;’ )+V (puu)=—Vp+V-[pr(Vu+uv)], (7) The resistance tens& is defined as

R= vk 1, (12

wherep=pRT is the fluid pressure. ) o o ) )
wherew is the fluid kinematic viscosity, anklis a(symmet-

ric) tensor of permeability coefficients. The centered-mean

velocity u is defined a$43]
Here we adopt the macroscopic porous media model in-

troduced by FreefR8]. It is an improvement on the model of — . F ( 1

B. Macroscopic porous media modeling

~ 1 13
u+2—u (13

-1

1
u'=l1+35R

~G:g-ﬁ, (14)

Spaid and Phelaf27], which is based on the general idea u=u+ - 2p 1-5-
that an external force can be introduced into the macroscopic
fluid dynamics by altering the local and instantaneous velocsypstituting Eq(13) into Eq. (11) and solving foru’ gives
ity during the collision step. Interphase and gravity forces
have been achieved in this fashipts,44. 1

Here we give a brief review of the macroscopic porous L—(T— 5)5
media model; readers may refer @8] for more details.
Some additional notation is introduced to help describe th%vhereG is the “velocity adjustment tensor,” which depends
method:u is the precollision(poststreamingvelocity; u’ is  on R and . When the resistance tensor is diagonal, @)
the postcollision veIomtyu is the “centered-mean” velocity, may be written as
i.e., the resulting mean field continuum velocity; is the
precollision (poststreamingdistribution, f;=f%p,u,T), f/ Uo=G,lUq (15
=fYp,u’,T), and f;=fYp,u,T), where the functional
form of f7%is given by Eq/(2). The right-hand sidéRHS) of

and the expression fdg, becomes

Eq. (1) can be defined as the collision operafprand for the 1
basic LB scheme may be written as 1—( — E) R,
f,-T, Comm 1 (18
C(fi):fi__. (8) 1+_Ra
T 2

056307-3



KANG, ZHANG, AND CHEN PHYSICAL REVIEW E 66, 056307 (2002

Direct use of Eq(9) for the collision step, in conjunction grid point on an arbitrary rectangular computational mesh in
with Eq. (14), results in an artifach in the momentum trans- a Cartesian coordinate system, ahx, anddY, denote grid

port equation at the viscous level of the form sizes,
A=V~(pm—pu'u’), 17 dX,=Xa41=Xa, (24)
where A appears on the RHS of the momentum transport dYs=Ygi1~Yg. (29

equation along with the resistance forEe= — pB-E The
artifact can be removed by replacing the equilibrium distri-
bution f{ used in Eq(9) by a modified distributiorf; , ré=dX,/é, (26)

The ratios of nonuniform-to-uniform grid sizes are defined as

fr=fl+gi—g/, (18) ry=dYs/d,. (27)

where&=gi(p,ET), g/ =gi(p,u’,T), and the functiory; is ~ Given the initial values of; at each grid pointX,,Y), the
LB system evolves on the nonuniform mesh in the following
steps.

(19 (1) Since the precollision value d6f(X, z,t) is known on
each grid point X,,Y ), the densityp and the precollision

);/elocityﬁ, can be calculated from Eqg#&}) and (5) at each

2

(g-u)? u

1+2(RT)2__2RT :

gi(p,U,T):wip

The complete algorithm for the porous media model ma

therefore be given as grid point. The postcollision velocity’ and centered-mean
velocity u can then be calculated from Eqd4) and (13),
f.(x,t)— ¥ (p,u,T) respectively. The modified equilibrium distribution function
fi(x+gd;,t+ o) =T (x,t)— , (200  can then be constructed using HE@1). The postcollision

T value off;(X, g,t) is henceforth obtained.

(2) After the collision, advection takes place, and the
fi(X, g1 &6;,t+ &) are obtained.

(3) The values offj(X, z,t+ 6;) on the mesh gridX, g
are computed by interpolation from the values fofX, 4
with u’ andu given by Egs.(14) and (13). The resulting +&&,t+ ) on the pointsX, s+&4;. Then the collision
macroscopic transport equations are and the advection process are repeated.

u’ u)2 u?
€ +(e)

+ —
! RT 2(RT?Z 2RT

fi'(puT) = wip

. (2D

ap D. Discussion of the unified model
—+TV-(pu)=0, (22) : : .
at In the simulation of flow through a porous system, this
model is employed by simply replacing the usual computa-
d(pu) B tional nodes with porous media nodes in the region supposed
ot TV (pu)==Vp—pR-u+V-[pp(Vut+uv)], to be occupied by porous medium. Each node in this region
(23 is given a permeability value and represents a homogeneous
medium with that permeability value. All continuum proper-

whereu is understood to be the centered-mean velogjty ties at this node have been volume averaged and satisfy the
which is the superficial velocity or the flux. It is clear that Mass and momentum transport equations given by &gs.
Eq. (23) recovers Brinkman’s equatidd5] when the inertial ~ @nd (23) [28]. At a node in pore space, however, the resis-
terms on the left-hand side can be neglected. The last term f&nce is specified as zero, all continuum properties are mi-
this equation is called the Brinkman correction, which is usu-Croscopic variables, and E(3) recovers the Navier-Stokes
ally much smaller than the linear-velocity term for flow €duation. At an impervious wall node where the resistance is
through porous media. Hence Eg3) is reduced to Darcy's 9diven as infinity, the velocity is zero according to Eg3),

law when flow in porous media is very slow. However, at@nd the nonslip condition is satisfied. This method treats the
sites where permeability is very large, i.e., the resistance i{g0rous medium nodes, pore nodes, and wall nodes in the
very small, the linear-velocity term is negligible compared toSame way, although they are at different length scales.
other terms and Eq23) recovers the Navier-Stokes equation Hence, there are no internal boundaries in this model. The
(Brinkman’s equation yields Stokes’ flow in this case the ~ €xtension of this method to a nonuniform grid gives it more
limiting case where the resistance tengdris infinite, u flexibility in handling flow in porous systems where multiple

equals zero, which is the no-slip condition at solid walls.  1ength scales coexist. o
The unified model presented here is different from other

existing multiscale methods. Unlike integrated scheé$

in which different methods are used to handle individual
For simplicity, we only consider a nonuniform, rectangu- scales, this unified model uses the same method in regions of

lar computational mesh in this study. Following the proce-different spatial scales and hence avoids the use of complex

dure adopted by Het al.[34], let X, s;=(X,,Y;) denote a methods to achieve seamless interfaces between the

C. Nonuniform grid extension
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different mathematical models at various scales. Compared
to the existing multiscale LB schem@47—49, the unified
model eliminates the internal boundaries and can handle a
larger scale span because of its utilization of resistance field.
On one hand, this model enables us to carefully investigate
some regions of great interest while ignoring the flow details
in regions far from there. On the other hand, it may not
provide such a smooth transition between these regions as do
some advanced coarsening techniques like wavghis

Neither the macroscopic porous media model nor its ex-
tension to a nonuniform grid changes the feature of parallel-
ism inherent in the basic LB algorithm, which renders the
unified model proposed in this paper especially suitable for
simulating flow in large-scale fractured media.

Ill. SIMULATION RESULTS AND DISCUSSION

In the simulations below, the resistance is assumed to be
isotropic by settingR,=R,, so the resistance tensor is
purely diagonal. Extending to anisotropic permeability and
hence anisotropic resistance fields should be straightforward.

A. Flow in porous media
1. Flow in a homogeneous porous medium

From Eq. (23), Darcy’'s law should be recovered for
steady flow when the inertial and Brinkman correction terms
can be neglected. A simple test of unidirectional flow
through a homogeneous porous medium is performed to
verify the validity of the method described here.

The simulation geometry is a rectangle of size X@,
based on regular square lattice unit spacings. The permeabil-
ity value at each node is equal to a constant. At the entrance
(x=0) and exit =100), pressure is specified by using the
inlet/outlet pressure boundary conditions proposed by Zou
and He[51]. At y=0 andy=40, periodic boundary condi-
tions are applied.

Two types of mesh are used in the simulations: a regular
uniform square mesh grid and a uniform rectangular mesh
grid. The square mesh grid is 7841, where the ratios of
nonuniform-to-uniform grid sizes arg=r,=1. No interpo-
lation is needed in simulations on this mesh grid. The rect-
angular mesh grid is 4421, wherer,=2.5, r,=2. The
guadratic interpolation is used because its accuracy is com-
parable to the accuracy of the LB method itself.

Figures 1a), 1(b), and 1c) show the dependence of the
specific discharge on the pressure drop at three values of

PHYSICAL REVIEW E66, 056307 (2002
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permeability: 1, 10, and 100, respectively. All quantities are FIG. 1. The dependence of specific discharge on the pressure
in lattice units. The simulation results on the rectanguladrop: test of Darcy’s law. All quantities are in lattice units. Three
mesh agree well with those on the square mesh, indicatingalues of permeability are use k=1; (b) k=10; (c) k= 100.

the correctness of the interpolation method used in this

study; it also confirms that the quadratic interpolation is sufsteady and the effects of inertial and Brinkman correction
ficient for this LB algorithm. The simulation results are in terms are negligible.

good agreement with analytical solutions based on Darcy’s
law, especially when the pressure drop is small. At a high
pressure drop, the simulation results deviate from the analyti-
cal solutions due to inertial effects and the compressibility We also simulated flows through a bimodal heterogeneous
inherent in the LB method. The simulation results confirmporous medium generated using a two-stage procdd@aie
that Egs.(22) and (23) recover Darcy’s law if the flow is The field is 16 mx 16 m, and the grid size is &81. The

2. Flow in a heterogeneous porous medium
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FIG. 2. The permeability distribution and the pressure contours X ()

obtained by the current metho@olid line9 and FeHm (dashed FIG. 3. The dimensionless pressure profile at the centerijine (
lines). The field is 16 nx16 m. The pressuréhead is 10.5 m at =8 m) obtained by the current methdgolid line and Ferm

entrance, and 10 m at exit. The permeability is in units 8f end  (y5ched fing p; is the pressure at the entrance, gnds the pres-
its values are multiplied by 2 The Reynolds number in the cur- ¢ re at the exit. The Reynolds number in the current method is
rent method is 5.98 10" °. 5.96x 10 3.

permeability field is composed of two permeability popula-
tions: one with a low mean permeabilitthe black material ~ ently, at this Reynolds number, the pressure contours of these
region, and the other with a high mean valg#he white two methods agree with each other very well, and they are
region. The permeability also varies within each region. both mainly distributed in two regions where the permeabil-
Overall, the maximum value of the permeability is 6.07 ity values are relatively small. This is correct since in such
x10 ¥ m? and the minimum value is 8.4610 ' m?®.  regions the resistance to the flow is larger and, accordingly, a
The pressurehead difference between the entrance and thegreater pressure drop is needed to achieve the overall flow
exit is 0.5 m. The density and viscosity of the fluid are rate; hence the pressure contours are denser than elsewhere.
997.81 kg/m and 1.00246:10°° kg m~'s™*. Figure 3 shows the dimensionless pressure profile along the
There is no analytical solution for flow through such angrizontal center of the domaifat y==8). The results of
porous medium because of the heterogeneity of the medium,ese two methods are in good agreement.
even though the flow is assumed to be steady and Darcy’s rigyres 4 and 5 show the same quantities as Figs. 2 and 3,

law is satisfied. To verify the validity of the method in simu- but in this case the Reynolds number is=Re75. The dif-

Iat!ng flow thrOl_Jgh such a m?d'“m' we.compargq Our SIMUze rances between the results from these two approaches in-
lation results with those obtained by using the finite-elemen

heat- and mass-transfer co@eHm) developed by Zyvoloski rease with the Reynolds numb(_er. A’F the relatively high Rey-
et al.[53]. In both simulations, the grid size is 8B1; pres- _nolds number of .4‘75’ the inertial forces becqme S0
sure (head is specified at entrance and exit; and Velocitylmportant that flow is not well represented by Darcy’s law.
along the normal direction of the other two boundaries is set
to zero. Notice that ireHM Darcy'’s law is used, while in our
method EQq.(23) is solved. However, in the case of steady
flow with a small Reynolds number, where inertial forces In the above section, we tested the validity of the method
and the Brinkman correction can be neglected, the results dor flow under situations where the resistance has nonzero
these two methods should be close to each other. The Refinite values. In this section, we test its validity in flow simu-
nolds number is defined as Reul/u, wherep andu are  lations where the resistance is zero or infinite.
the density and viscosity of the fluid, respectively, anahd The simulation geometry is a rectangle of size X,
| are the characteristic velocity and length of the systembased on regular square lattice unit spacings. At nodgs of
respectively. Herd is the length of the field, and is the = =0,1,2,22,23,24, the permeability is set to zero, i.e., resis-
average horizontal velocity in the whole fluid field. tance is infinite. At other nodes, the permeability is set to
Figure 2 shows the permeability distribution and the con4nfinity, i.e., resistance is zero. At the entrance=Q) and
tours of pressurénead obtained by these two methods. The exit (x=100), the pressure is specifigdil]; aty=0 andy
permeability values are multiplied by 0 The solid lines =24, periodic boundary conditions are applied. This set of
are the results obtained with the current method, and thpermeability values should recover the 2D channel flow be-
dashed lines are results obtained witHM. The Reynolds tweeny=2 andy=22; this flow has an analytical solution.
number in the current method is R&.96<10 3. Appar-  The horizontal velocity has the following form:

B. Flow in a 2D channel
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FIG. 4. The permeability distribution and the pressure contours x (m)
obtained by the current metho@olid lines and FEHm (dashed ) ] . .
lines). The field is 16 mx 16 m. The pressuréhead is 10.5 m at FIG. 5. The dimensionless pressure profile at centerlipe (

entrance, and 10 m at exit. The permeability is in units 8f and ~ —8M) obtained by the current methotbolid line) and FEHM
its values are multiplied by 8 The Reynolds number in the cur- (dashed ling p; is the pressure at the entrance, qmds the pres-
rent method is 4.75. sure at the exit. The Reynolds number in the current method is 4.75.

C. Flow through fractured systems

(28) In previous sections, we applied the method presented in
this paper to flows in porous media at the field scale and flow
in a 2D channel at the pore scale. Now we apply the method
to flows in fractured systems where multiple scales coexist.
tween the entrance and the eyit,is the fluid viscosity, and For this purpose, the use of nonuniform grids is advanta-
. °’ " geous. Figure 7 shows a fractured system constructed by
! ' the channel length. The averaged velocity Us  mirroring the original porous medium and leaving a fracture
=h“Ap/12ul, and the permeability can be calculated as  pepween the original medium and its image. The size of this
fractured system is 255530, and the fracture width is 20,
— ) both in lattice units. When the conventional LB method,
K= “_:U«': h_ (29) based on a uniform square grid, is applied to this system, a
Ap 12 mesh size of 258 531 is needed. However, if we are inter-
ested in only the overall behavior of the fractured system
instead of the flow details in the two porous matrices, we
Equation(29) is called the cubic law, and is widely used in may simplify the two porous matrices as homogeneous ones,
discrete-fracture models to calculate the permeability of and use substantially fewer nodes to represent them. Each of
single fracture. the nodes has the permeability value of the original porous
Figure 6 shows the horizontal velocity profile normalized medium(0.59 in lattice units, which is used as input at each
by the centerline velocity, of the analytical solution. Itis node. In the simulation with the current method, there is no
clear that the velocity profile frog/h=0.1toy/h=1.1(y  detailed geometry at the pore scale, and the original porous
=2 toy=22) is parabolic; velocity at the nodes out of this medium and its mirror are replaced by a homogeneous po-
region is zero. This is correct because the resistance is infrous medium. Figure 8 shows the mesh used in the simula-
nite at those nodes. It is clear that the 2D channel flow igjon of the current method. The mesh size is only<3D1.
recovered with excellent accuracy for this setup. The permer, s 5.1 at all nodes, and, changes smoothly from (Inside
ability of the channel is also calculated; it is 33.1, very closethe fracture to 12.657(aty=0 andy=>530). In both simu-
to the analytical solution obtained from the cubic law |ations, the pressure is specified at the entrance and5ajt
(33.3333. and periodic boundary conditions are applied to the other
As opposed to the conventional LB method for simulatingtwo boundaries. The permeability in a region is calculated by
the 2D channel flow, there are no boundary conditiong at
=2 andy=22. The no-slip conditions at the walls are imple- uul
mented by prescribing the resistance values there as infinity. k= A_p (30)
This characteristic enables the current method to treat in the
same way void spaces, solid walls, and nodes with nonzero

finite values of resistance. whereu is the average horizontal velocity in this region.

_ h*Ap[y—2 [y—2)2
“2ull h U h)

whereh is the channel widthAp is the pressure drop be-
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FIG. 6. The horizontal velocity profilénormalized by the cen-
terline velocityU, of analytical solutiomn of 2D channel flow.

Table | shows the permeability values of the bottom half,
the top half, the fracture, and the whole system calculated by
the conventional LB method and by our current method. It is
clear that the permeability values of the porous matrix ob-

PHYSICAL REVIEW E 66, 056307 (2002

FIG. 8. Nonuniform rectangular mesh used in the simulation of

tained by the current method are smaller than those calCypg fractured system.

lated by the conventional LB method, and that the perme-

ability value of the fracture obtained by the current method ishomogeneous. There is no guarantee here that the original
greater than that obtained by the conventional LB methodporous medium is homogeneous. The local heterogeneity of
This discrepancy is partly due to the heterogeneity of thehe medium plays an important role in the interaction be-

porous matrix.

tween the porous matrix and the fracture and thus has an

As mentioned above, the basis for replacing the usuaimportant effect on the permeability values calculated by Eq.
computational nodes in a region with nodes with uniform(30) for both the porous matrix and the fracture. However,
permeability values is that the porous matrix in this region isfor the overall permeability of the fractured system, the value

0

>

[

255

obtained in the current method is very close to that obtained
by the conventional LB method in spite of the local hetero-

geneity of the porous matrix. This is very encouraging. For a
fractured porous system, we may represent a region of po-
rous medium or minor fractures with considerably fewer

nodes having certain permeability values and solve the the
flow in this region on a length scale much larger than the
pore scale; we should, however, solve flow in a region of

major fractures with fine grids. By doing so, we can handle

fractured systems where multiple length scales coexist.

In the rest of this section, we apply the method presented
in this paper to flow via a simplified fractured system to
investigate the validity of the cubic law, which is widely
used in discrete-fracture models. Figure 9 shows a simplified
fractured system, wheieis the length along the flow direc-
tion, his the width of the fracture, anldl, is the width of the
porous matrix. In our simulations,is 200 andh is 20, both
in lattice units. Two values di, (200 and 40pare used. The
mesh size in the direction is 51, withr,=4 at all nodes. In
they direction, the mesh size is 61 in the former case and
101 in the latter case. The valug changes smoothly from 1
(inside the fractureto 9.48 (at y=0 and y=220 in the

FIG. 7. Geometry of a fractured system. Its size is based on théormer casgand 9.50(aty=0 andy =420 in the latter cage

lattice unit.

Figure 10 shows the mesh used in the simulations on the

056307-8



UNIFIED LATTICE BOLTZMANN METHOD FOR FLOW . .. PHYSICAL REVIEW E66, 056307 (2002

TABLE |. Permeability valuegin lattice unitg.

Top half Bottom half Fracture Overall

Conventional LB 0.64 0.64 35.31 1.94
Current method 0.61 0.61 37.01 1.99
Error -4.7% -4.7% 4.8% 2.6%

system withh,=200. Again, the pressure is specified at both
ends[51], and periodic boundary conditions are applied at
y=0 andy=h,+h.

Figure 11 shows the dependency of the normalized per-
meability of the fracture and the whole system on the nor-
malized permeability of the porous matrix for bokh/h
=10 andh,/h=20. The valuek, is the permeability calcu-
lated by the cubic law with the fracture width, akglis the
effective permeability of the whole system under the condi-
tion that the porous matrix is impermeable. The vatyds
the permeability of the porous matrik; is the permeability FIG. 10. Nonuniform rectangular mesh used in the simulations
of the fracture, and is the permeability of the whole frac- of the simplified fractured system with, /h=10.
tured system. The ratio &, to ko can be used as an indica-
tion of error caused by the cubic law used to calculate th&ke/ko, however, does depend on the width ratio of the po-
permeability of the whole fractured system. It is clear thatrous matrix to the fracture. At a given valuekgf/k. greater
whenk,/k. is less than 10* k,/k, andk; /k. are very close than 10 the kc/ko of h,/h=20 is larger than that of
to 1 in both cases. At this small value kf/k., the perme- h,/h=10. That is, when the width ratio is big enough, al-
ability of the porous matrix is so small, compared to thethough the flow in the porous matrix is still very small, the
fracture, that flow inside it contributes little to the whole contribution of the porous matrix to the fractured system is
system. Hence, the total effective permeability of the frac-not negligible due to its large size compared to the fracture.
tured system can be calculated as though the porous matrix ie cubic law used in this case to calculate the fracture per-
impermeable, and the permeability of the fracture can beneability will incur significant error. This also means that the
calculated by the cubic law based on the width of the frachigher the ratio, the more significant the error caused by
ture. Ask,/k; increases to about 10, ke/k, of the case using the cubic law, and hence the stricter the conditions of
h,/h=20 begins to increase. using the cubic law to calculate the fracture permeability.

With the further increase d€,/k, thek./k, of the case

. . 3
h,/h=10 also begins to increase. Ag/k. exceeds 10°, I ' ' ' ' T -
ki/k. in both cases begins to increase. The dependenc) - o
curves ofks /k; onk,/k. in the two geometries coincide with [ —e— K/, (h/h=10) ]
each other. This is reasonable: whignis big enough, the 25 — 0= - k/k (h/h=10) -

i i K ——v—-- k/k (h/h=20) J
flow in the porous matrix away from the fracture becomes o e (B h=20)
uniform; the permeability of the fracture does not depend on [ i
h,. The normalized permeability of the whole system, & | 55,‘? J

A 2] T
N i .
| ol ]
Porous matrix hpf sk i
Fracture h ; i i ) PN ]
S 1 "IN ' 1
107 T 10° 10° 10* 10* 10°
k/k,
Porous matrix he/2
FIG. 11. Dependency df; /k; andkg/ky onk, /K., wherek is
l the permeability calculated by the cubic law with the fracture width;
ko is the effective permeability of the whole system under the con-
= 1 » dition that the porous matrix is impermeablg;is the permeability
of the porous matrixk; is the permeability of the fracture; atd is
FIG. 9. Geometry of a simplified fractured system. that of the whole fractured system.
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Figure 12 illustrates the horizontal velocity profile®r- 1"
malized by the centerline velocity of the fractua# the flow 10
through the fractured system with,/h=10 at k,/k.
=10, 10 2 and 10 *. At k,/k.=10">, the velocity pro-
file in the fracture is parabolic, and the velocity is almost
zero in porous matrix. The interface between the porous ma-
trix and the fracture is very sharp. K /k,=10"2?and 10°*,
the flux in the porous matrix has a finite value, although
small, and makes a significant contribution to the system<
since the size of the porous matrix is much larger than that of
the fracture. Now the interface between the porous matrix
and the fracture is smoother, indicating an interaction be-
tween the porous matrix and the fracture. As a result, the flux
in the porous matrix very close to the interface is larger than
that flux far away. Now the velocity profile in the fracture is
no longer parabolic because the no-slip boundary condition 1
is not satisfied at the interface. In this situation, a direct use
of the cubic law will cause significant error.

k/k=10"

-2

- — — - k/ks=10
— == k/k=10"

N w o (4] -] ~ -] ©
N

MR T I ST NN S SN S NS S S N N
0.2 0.4 0.6 0.8 1
wu,

o

o

IV. CONCLUSIONS FIG. 12. The horizontal velocity profilehormalized by the

- ) ) _centerline velocity of the fractuyeat k,/k,=10"°, 1072, and
We have developed a unified microscopic/macroscopiqg-1,

porous media method capable of simulating flow in various-
length-scale porous systems and in systems where multiple
length scales coexist. the ratio is larger than I, the flow in the matrix has sig-

Application of this method to a unidirectional steady flow nificant effects on the fractured system, and the assumption
through a homogeneous and a heterogeneous porous medidipat the matrix is impermeable does not hold. Therefore, the
recovered Darcy’s law when the effects of inertial forces andise of the cubic law to calculate the fracture permeability
the Brinkman correction can be neglected. Direct use of thigvill cause significant errors. It was also indicated that the
model on the usual computational nodes, with zero resistandbreshold value of 10 is not fixed. As the width ratio of the
on void spaces and infinite resistance on solid walls, gav@orous matrix to the fracture increases, the conditions for
results that agree very well with the analytical solutions.  using the cubic law are stricter.

Simulations performed on a fractured porous system indi- In this study, we used only rectangular grids in all the
cated that, as far as the overall permeability of the systermeshes, including the nonuniform ones, to validate our
was concerned, the current method gave a very good resulmethod. To simulate flow in realistic porous or fractured me-
and that the method presented here is capable of handlirdja, it is necessary to extend our method to curvilinear coor-
fractured systems with large length-scale spans. dinate systems or composite grids. This is the topic of our

Simulations were also performed on a simplified fractureduture work.
system. In the vicinity of the fracture, fine grids are used so
the effects of the fracture are counted. Far from the fracture,
coarse grids are used, so simulation size can be very large.

The dependency of the normalized permeability of the frac- This study was partially funded by LDRD/ER Project No.
ture and the whole system on the normalized permeability 089025 from Los Alamos National Laboratory, which is oper-
the rock matrix was shown. It is clear that, when the ratio ofated by the University of California for the U.S. Department
permeability of the porous matrix to that of the fracture cal-of Energy. The authors thank Zhiming Lu of Los Alamos
culated by the cubic law is less than™1{) the effects of the National Laboratory for generating the heterogeneous porous
flow in the rock matrix are negligible, and discrete-fracturemedium and providingFeHM simulation results of flow
models that ignore the flow in the matrix are plausible. Wherthrough this medium.
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